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a b s t r a c t

The solution of the Navier–Stokes equations requires that data about the solution is avail-
able along the boundary. In some situations, such as particle imaging velocimetry, there is
additional data available along a single plane within the domain, and there is a desire to
also incorporate this data into the approximate solution of the Navier–Stokes equation.
The question that we seek to answer in this paper is whether two-dimensional velocity
data containing noise can be incorporated into a full three-dimensional solution of the
Navier–Stokes equations in an appropriate and meaningful way. For addressing this prob-
lem, we examine the potential of least-squares finite element methods (LSFEM) because of
their flexibility in the enforcement of various boundary conditions. Further, by weighting
the boundary conditions in a manner that properly reflects the accuracy with which the
boundary values are known, we develop the weighted LSFEM. The potential of weighted
LSFEM is explored for three different test problems: the first uses randomly generated
Gaussian noise to create artificial ‘experimental’ data in a controlled manner, and the sec-
ond and third use particle imaging velocimetry data. In all test problems, weighted LSFEM
produces accurate results even for cases where there is significant noise in the experimen-
tal data.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The solution of the Navier–Stokes equations requires the specification of a domain and data along the boundaries of that
domain (i.e., boundary conditions). The development of new experimental techniques, including particle imaging velocime-
try (PIV), has created a situation in which additional data may be available along a lower-dimensional region of the domain.
For example, data may be available along a two-dimensional plane within a three-dimensional domain. Further, it may be
desirable to incorporate this experimental data into the solution of the Navier–Stokes equations. For example, echocardiol-
ogists can use FDA-approved microbubbles and PIV to determine two components of the blood velocity along a single plane
within the left ventricle of the heart [11,23,24]. Despite the abundance of data, ultrasound and PIV alone are insufficient for
calculating the flow properties of interest to clinicians, such as the pressure gradient and total energy loss, which require
knowledge of the full three-dimensional velocity field. This is an example of an application where it may be useful to assim-
ilate two-dimensional velocity data into a three-dimensional solution of the Navier–Stokes equations, which is distinctly dif-
ferent from using experimental data (e.g., PIV) to validate a computational fluid dynamics result (e.g., [10,25]).
. All rights reserved.
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The most obvious approach for assimilating additional data into a standard finite element or finite volume computational
fluid dynamics algorithm is to include the data as an essential boundary condition along an internal two-dimensional plane
within the domain, but we would immediately run into numerous difficulties, including:

� the error in the experimental data could result in external boundary conditions that, overall, do not conserve mass (e.g.,
more flow into the domain than out of the domain);

� similarly, the experimental error may prevent global momentum conservation; and
� high-frequency error in the experimental data could contaminate the approximation beyond the plane (or subregion)

where it is given.

The lack of mass conservation is especially troublesome, and has been shown to have a significant impact on the
approximate solution for most standard approaches [12]. We could project the boundary data onto a divergence-free sub-
space, but this projection could increase the error in the boundary data. We seek to determine if a numerical approach for
solving the Navier–Stokes equations can overcome these difficulties, including boundary conditions that do not conserve
mass exactly.

Since the boundary data has error (uncertainty), one approach would be to run a large number of computational simu-
lations that cover the entire range of possible boundary conditions [1]. This approach does not produce a single prediction
but, instead, a probability distribution of predictions. It can also produce information such as the most likely or mean pre-
diction. Unfortunately, this information comes at a significant computational cost. For example, PIV data often contains 100’s
or 1000’s of data points so more than 105 simulations may be required to simulate the entire space of possible values for the
data. The objective here is to obtain an average prediction using a single predictive simulation.

A simplified version of the data assimilation problem is shown in Fig. 1, which contains two domains ðXaÞ and ðXbÞ. Let
X ¼ Xa [Xb, and let Cv be the common boundary between the two domains. Finally, each domain ðXaÞ and ðXbÞ has an exter-
nal, unshared boundary given by C1 and C2, respectively. Assume that a well-posed, first-order linear operator equation
Lx ¼ f applies on X with boundary conditions x ¼ g1 on C1; x ¼ g2 on C2, and x ¼ gv on Cv . If the boundary data, g1; g2,
and gv , are known exactly, then any suitable approximation method can be used on each individual domain, X1 and X2.
The only reason, in this case, to use an approximation method on the full domain, X, is to achieve increased continuity of
the approximation across gv . However, as we show below, if some or all of the boundary conditions are not known exactly
and completely, then it may be advantageous (or necessary) to solve a single problem on the full domain.

One technique for solving this problem on a full domain is a least-squares finite element method (LSFEM), which begins
by rewriting the linear operator equation as an optimization problem based on the functional
Gxðx; f;g1;g2;gvÞ :¼ kLx� fk2
0;X þ kx� g1k

2
1=2;C1

þ kx� g2k
2
1=2;C2

þ kx� gvk
2
1=2;Cv

: ð1Þ
The L2 norm is
kxk0;X ¼
Z

X
jxj2

� �1
2

; ð2Þ
Fig. 1. Two domains sharing a common boundary, Cv , and unshared external boundaries, C1 and C2.
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and the H1=2 norm is
kxk1=2;C ¼ inf kgk1;X : g 2 H1 Xð Þ; trace g ¼ x on C
n o

: ð3Þ
The exact solution is found as the unique minimum of Eq. (1) over an appropriate Sobolev space. The solution could be
approximated by minimizing Eq. (1) over a finite-dimensional finite element space, but the boundary functional would
be difficult to evaluate. Instead, inverse inequalities are used, which are valid over the finite element space [9]. Here, the
H1=2 norm is replaced by an L2 norm weighted by 1

h, since for x̂h in a finite element space
kx̂hk1=2;C 6
C
h
kx̂hk0;C: ð4Þ
The effect of replacing the H1=2 norm with the scaled L2 norm is that the oscillatory component of x is de-emphasized relative
to the H1=2 norm. Replacing the H1=2 norm leads to the functional
bGxðx; f;g1;g2;gvÞ :¼ kLx� fk2
0;X þ

1
h
kx� g1k

2
0;C1
þ 1

h
kx� g2k

2
0;C2
þ 1

h
kx� gvk

2
0;Cv

: ð5Þ
The functional given by Eq. (5) is of the form normally used for first-order linear operators with exact boundary conditions.
This same functional is also appropriate when the boundary data are not known exactly (i.e., g1, g2, and gv contain exper-
imental error), but the error or uncertainty in the boundary data is identical for all boundaries (i.e., the standard deviation
of the boundary data is the same for all boundaries). A final, special case occurs when only g1 and g2 are known exactly, but
gv includes experimental error, which is assumed to be Gaussian with standard deviation rv . In this case, the final term in
the functional, 1

h kx� gvk
2
0;Cv

, should be eliminated because utilizing that term corrupts the approximation with experimental
error and optimality will be lost. The error in gv pollutes the convergence of the approximation as h! 0. It is possible that if
the domain (and, consequently, h) is sufficiently large and rv sufficiently small, it may be beneficial to incorporate the final
term, but this extreme case is beyond the scope of this paper. For most practical problems, the final term should be elimi-
nated if rv > 0 but g1 and g2 are exact.

While the functional given by Eq. (5) is appropriate for exact boundary conditions or the case when all boundary condi-
tions contain the same error, it is not appropriate for the general case when all boundary conditions contain error and those
errors are not of equal size, such as that occurring when PIV data is used as an additional, internal boundary condition in a
numerical simulation. The objective here is to develop a new functional, similar to Eq. (5), that can account for error in the
boundary conditions assuming that the size of the uncertainty is known (i.e., that the standard deviation of the boundary
data is given by r1;r2, and rv for boundaries conditions g1j;g2, and gv , respectively). A functional that meets this objective
is described in the next section. We then examine the performance of the functional and resulting numerical algorithm on
different test problems.

2. Methods

The previous problem description contained a first-order linear operator, L. Many problems of interest, however, are
based on higher-order and nonlinear operators. For example, blood flow in the left ventricle is typically modeled using
the Navier–Stokes equation or a similar equation with a non-Newtonian viscosity [14,18]. Extensive research has estab-
lished techniques for converting the higher-order, nonlinear operators into first-order linear operators that can be treated
efficiently with iterative matrix solvers [4,6,17]. Here we only illustrate one process for converting the Navier–Stokes
equations into a first-order system of equations, and we refer the interested reader to [15] for additional details of this
processes.

The steady Navier–Stokes equations for an incompressible, Newtonian fluid are
�
ffiffiffiffiffiffi
Re
p

v � rvð Þ � r pþ 1ffiffiffiffiffiffi
Re
p Dv ¼ 0 in X; ð6Þ

r � v ¼ 0 in X; ð7Þ
where p is the non-dimensional pressure, Re is the Reynolds number, and v ¼ ðvx;vy;vzÞ is the dimensionless velocity. To
rewrite Eqs. (6) and (7) as a first-order system of equations, we use the identity
ðv � rÞv ¼ 1
2
rjvj2 � v � ðr� vÞ; ð8Þ
and define the negative vorticity, x, by
x ¼ �r� v; ð9Þ
and another new variable, r, by
r ¼ rpþ
ffiffiffiffiffiffi
Re
p

2
rjvj2 ¼ r

ffiffiffiffiffiffi
Re
p

2
jvj2 þ p

 !
; ð10Þ
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which is the gradient of the total head (commonly referred to as the gradient of ‘‘pressure” [2]). A first-order system refor-
mulation of the Navier–Stokes equations is as follows:
Table 1
Bounda

Inlet
n � v
n� v
n �x
n � r
n � r

Outle
n � r
n� v
n �x
n � r
n � r

Wall
n � v
n� v
n �x
n � r
n � r

Inter
n� v
r� v þx ¼ 0 in X;

r � v ¼ 0 in X;

1ffiffiffiffiffiffi
Re
p r�x� r�

ffiffiffiffiffiffi
Re
p
ðv �xÞ ¼ 0 in X;

r �x ¼ 0 in X;

r� r ¼ 0 in X;

r � r�
ffiffiffiffiffiffi
Re
p
ðx �xÞ � Reðv � rÞ ¼ 0 in X:

ð11Þ
The corresponding functional for the new formulation is
GXðx;v; rÞ :¼ kxþr� vk2
0;X þ kr � vk2

0;X þ k � rþ 1ffiffiffiffiffiffi
Re
p r�x�

ffiffiffiffiffiffi
Re
p
ðv �xÞk2

0;X þ kr �xk2
0;X þ kr� rk2

0;X

þ kr � r�
ffiffiffiffiffiffi
Re
p
ðx �xÞ � Reðv � rÞk2

0;X: ð12Þ
The functional for the linearized equations, along with the boundary conditions described below, are minimized using stan-
dard techniques from the calculus of variations to obtain the weak form (e.g., [2,3]). A finite element basis is then chosen so
that the weak form generates a matrix problem, which can be solved using a wide variety of linear solvers [13,17].

The boundary conditions used here for velocity and the new variables introduced in the process of creating a first-order
system are summarized in Table 1. A large range of alternative boundary conditions may be used for flow problems [2]. It is
important to note that internal boundary conditions along a plane are usually not enforced on x or r because the experimen-
tal velocity data is discrete and, thus, not differentiable. Further, PIV, for example, often only provides two velocity compo-
nents and not the full three-dimensional field because out of plane particle motion is not measurable (except when using
stereo PIV). Boundary conditions are typically enforced weakly (i.e., included in the functional as shown in Eq. (5)), but they
may also be enforced strongly (i.e., enforced on the finite element approximation space) if they are known exactly. For exam-
ple, if all the velocity components along the wall ðCwÞ are exactly zero and enforced strongly, but the remaining boundary
conditions are enforced weakly, then the boundary functional along the wall is
GCwðx; rÞ :¼ 1
h
kn �xk2

0;Cw
þ 1

h
n � r� n � 1ffiffiffiffiffiffi

Re
p r�x

���� ����2

0;Cw

: ð13Þ
Assume that we have three types of external boundaries: (1) inflow – Cin, (2) outflow – Cout , and (3) walls – Cw. Assume that
we also have internal boundaries, Cv , with additional experimental data (e.g., PIV data). Then the full functional is
Gðx;v; rÞ :¼ GX þ GCin
þ GCout þ GCw þ GCv ; ð14Þ
where the GC’s contain the boundary functional terms for each type of boundary.
ry conditions used for the first-order formulation of the Navier–Stokes equations.

boundary conditions
¼ gin

¼ 0
¼ 0
� n � 1ffiffiffiffi

Re
p r�x ¼ 0 or

� n � 1ffiffiffiffi
Re
p r � rv ¼ 0

t boundary conditions
ðv � nÞ ¼ 0
¼ 0
¼ 0
� n � 1ffiffiffiffi

Re
p r�x ¼ 0 or

� n � 1ffiffiffiffi
Re
p r � rv ¼ 0

boundary conditions
¼ 0
¼ 0
¼ 0
� n � 1ffiffiffiffi

Re
p r�x ¼ 0 or

� n � 1ffiffiffiffi
Re
p r � rv ¼ 0

nal boundary conditions
¼ n� gv
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As described in the introduction, functional Gðx;v; rÞ (Eq. (14)) is appropriate when all boundary conditions are exact and
the boundary terms in the functional are similar to Eq. (13) with each term weighted by the same amount, 1

h. However, we
are interested in the general case where the boundary conditions are not known exactly and the error in the boundary con-
ditions varies from boundary to boundary. When the assumption of equal standard deviation between the different bound-
ary data and experimental data is not valid, we need the boundary terms in the functional to be weighted so that data with
large standard deviation is downweighted, and this is accomplished using the weighted LSFEM (WLSFEM, [19,20]). We intro-
duce the functional
Gwðx;v; rÞ :¼ GX þwinGCin
þwoutGCout þwwGCw þwvGCv ; ð15Þ
where win;wout;ww, and wv are the weights given to the different boundary terms in the functional based on the error in that
boundary data. For example, the weighted functional term for the internal boundary is
wvGCv ðv; gvÞ :¼ wv

h
kn� v � n� gvk

2
0;Cv

; ð16Þ
and the other boundary functionals have a similar form.
To determine appropriate values for the boundary weights, win; wout; ww, and wv , it is useful to expand the boundary data

in terms of the data error for one boundary and to rewrite the associated boundary functional accordingly. For example,
assuming g�v is the exact boundary value, which is not known, and the error is �, then the weighted internal boundary func-
tional could be written
wvGCv ðv; gvÞ :¼ wv

h
kn� v � n� g�v þ �ðOðrvÞÞk2

0;Cv
; ð17Þ
where rv is the standard deviation for the boundary data, gv . As stated in the introduction, if all boundary conditions are
exact (e.g., rv ¼ 0), then all boundary condition weights should equal 1 (e.g., wv ¼ 1) and, as rv increases relative to the
other boundary conditions, we would like wv to decrease in a reciprocal manner. Since the goal is to scale the functional
so that � is the same for each boundary, we can simply divide v and g�v by rv . Factoring 1=r2

v out of the norm indicates that
wv should be set to the reciprocal of the variance, r2

v , of the experimental boundary data: wv ¼ 1=r2
v , which is consistent

with weighted least-squares regression [7,8,22]. To simplify this process, we typically set the weighting on the boundary
functional to 1 for the most accurate boundary data. Then, all the other boundary functional weights are set to the variance
for the most accurate data divided by the variance for that particular boundary data. For example, if the velocity along the
inlet is known with a variance of 0:001 cm2=s2, which is the smallest variance for all boundaries, and the velocity along the
internal boundary is known with a variance of 0:1 cm2=s2, then win ¼ 1 and wv ¼ 0:01. Typically, the velocity along the wall
will have the smallest variance (unless the location of the wall is difficult to determine), and the experimental data will have
the largest variance, so wv < 1 is normally used.

3. Results

The performance of WLSFEM is examined on three different test problems. The first case uses ‘experimental’ data from a
random number generator and not an actual experiment, while the second and third cases uses PIV data from an actual
experiment. It is difficult to quantify the performance of a numerical method when neither an analytical solution or a highly
refined solution is available, which is the case here when the boundary conditions contain noise. For the first two test prob-
lems, which are both flow through a cylindrical tube, qualitative comparison is possible because the solution, even with the
noise in the boundary condition, should be relatively straight and smooth. However, to achieve a quantitative comparison,
we can take advantage of the fact that we are using a least-square formulation of the problem and use the value of both the
full functional, Gw, and internal functional GX, as a measure of the quality of the solution. The value of the full functional, Gw,
measures how well the approximate solution satisfies both the Navier–Stokes equations and the boundary conditions. Fur-
ther, if the functional value with the internal PIV data included is compared to the functional value without the internal data,
the ratio should be small if the internal data is consistent with the external boundary data and the Navier–Stokes equations.
In other words, if the functional value changes significantly when the internal PIV data is included, it is indicating that the
PIV data is over-weighted or some other error exists in the model. The drawback of the full functional is that it contains the
weights being applied to the boundary conditions, so it is difficult to compare the performance of different boundary con-
dition weights using a functional that contains the weight. On the other hand, for the internal function, GX, smaller values
imply that the solution better satisfies the first-order system of equations (Eq. (11)), and, ultimately, better satisfies conser-
vation of momentum and mass (i.e., the Navier–Stokes equations). The internal functional, has the advantage that the
weighting of the boundary functional terms does not bias the functional value used in the comparison. Both the full func-
tional, Gw, and internal functional, GX, are reported for each test case.

3.1. Straight tube with artificial data

The geometry for the first test problem is a three-dimensional straight cylindrical tube with an aspect ratio (length-to-
diameter) of 5.0, and the flow is assumed to have a Reynolds number of 100 (all variables are non-dimensional). The central
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axis of the tube lies along the z-axis of the coordinate system, and the flow is assumed to be fully developed so that the prob-
lem with exact boundary conditions has an analytical solution of v ¼ ½0;0;1� ðx2 þ y2Þ=R2�, where R is the radius of the tube.
The boundary conditions used are those described in Table 1, and gin is set using the analytical solution. A small amount of
Gaussian noise with zero mean and standard deviation r ¼ 0:01 is added to external boundary conditions using a Box–Mul-
ler transformation for mapping a uniform distribution to a Gaussian distribution [5]. If the Gaussian noise is not included on
the external boundaries and the exact boundary conditions are used instead, then, as described in the methods section, a
weight of wv ¼ 0 should be used so that the internal boundary conditions with error are ignored. The internal boundary
is given by the x ¼ 0 plane, along which gv is set to the y- and z-components of the analytical solution plus some Gaussian
noise with zero mean and standard deviation rv ¼ 0:1. As a result of the standard deviations for the various boundary con-
ditions, win ¼ wout ¼ ww ¼ 1:0 and wv ¼ 0:01.

This test problem has numerous advantages for analyzing the performance of WLSFEM. First, when a triquadratic finite
element basis is used in conjunction with 27-node hexahedral brick elements, the analytical solution is nearly in the approx-
imation space, though not exactly: triquadratic elements cannot exactly represent a cylindrical surface and, in any case, a
small amount of Gaussian noise was added to the external boundary conditions. The result of having the numerical solution
nearly in the approximation space is that, with the internal boundary weight set to zero, the value of both the total func-
tional, Gw, and the internal functional, GX, can be used as a sharp measure of the error introduced by the noise from the inter-
nal boundary condition (i.e., the noise in the ‘experimental’ data). If the internal boundary condition did not exist, the value
of the functional would be close to zero (more precisely, Gw ¼ 1� 10�3 and GX ¼ 8� 10�4 when the internal boundary data
is not used, see Table 2).

The ‘experimental’ data (i.e., the analytical solution plus Gaussian noise) used for the internal boundary condition is
shown in Fig. 2(a). Most numerical algorithms for approximately solving the Navier–Stokes equations strongly enforce veloc-
ity boundary conditions and, as a result, would strongly enforce the internal boundary data shown in Fig. 2(a). This noisy
data impacts the global three-dimensional solution and affects convergence as the computational mesh is refined. If we en-
force the internal boundary condition strongly and continue to use LSFEM to solve the Navier–Stokes equations, we then can
see that the functional is very large after convergence to the functional minimizer (Gw ¼ 5:3 and GX ¼ 5:2; see Table 2), indi-
cating that the equations shown in system (11) are not satisfied nearly as well as when the internal data is not used. If we
look at a single plane of the approximate solution (the x = 0.1 plane, Fig. 2(b)), we can see that most of the noise present along
the internal boundary plane (i.e., the x = 0 plane) is damped out, but some noise remains. The diameter of the tube in the test
problem is 1.0, and the noise from the internal boundary is further dampened at planes beyond the x = 0.1 plane.

When the same ‘experimental’ data shown in Fig. 2(a) is enforced weakly with the correct boundary functional weighting
ðwv ¼ 0:01Þ, we observe a much more accurate solution, which is shown in Fig. 3 both along the internal boundary condition
plane ðx ¼ 0Þ, Fig. 3(a)) and along the x ¼ 0:1 plane (Fig. 3(b)). The size of the functional also reflects the improved approx-
imation that results from using the proper weighting. The functional is 1� 10�3 at the solution when the noisy experimental
data is not used, 5.3 when the ‘experimental’ data is strongly enforced through the boundary conditions, and 8:1� 10�2

using the correct weighting on the weakly enforced boundary conditions. In fact, LSFEM without boundary weighting
(i.e., all boundary weights set to 1) does an acceptable job of handling boundary conditions with error because the high-fre-
quency errors are de-emphasized by the approximate H1=2 boundary norm and, as a result, even without the proper bound-
ary weight, the LSFEM approximation has a functional value of 0.34. A test was also done with the level of Gaussian noise
added to the external boundary data and internal boundary data reversed so that rin ¼ rout ¼ rw ¼ 0:1 for the external data
and rv ¼ 0:01 for the internal data. The boundary functional weights were also reversed, and the results were very similar to
those shown in Fig. 3(a) with the functional also changing little to 3� 10�3.

If the size of the error in the experimental data is increased from rv ¼ 0:1 to rv ¼ 0:4 and the error in the other boundary
data is increased by a proportional amount, then the numerical simulation becomes more difficult due to the additional
noise. Fig. 4(a) shows the experimental data with larger Gaussian noise added, and Fig. 4(b) shows the simulation result
along a the plane x = 0.1 with the experimental data strongly incorporated into the numerical simulation. LSFEM does sur-
prisingly well even with experimental data containing significant error being strongly enforced. However, the value of the
functional, Gw, is 22.3 (GX ¼ 21:6) when it is minimized over a triquadratic finite element space, indicating that the approx-
imate solution is really not satisfying the functional even though it visually appears acceptable.

When WLSFEM is used on the larger error data shown in Fig. 4(a) and proper weighting is included on the boundary terms
in the functional, an improved result is obtained, as shown in Fig. 5. This is an interesting result because most of the inlet
Table 2
Effect of different weights on the internal boundary condition. wv ¼ 0 results in no internal boundary condition, wv ¼ 0:01 is the calculated weight for WLSFEM,
wv ¼ 1:0 gives the same weight to all boundary conditions regardless of the size of the error in the data, and the last row is strong enforcement of the internal
boundary condition.

wv Value Gw Value GX

0 1� 10�3 8� 10�4

0.01 8:1� 10�2 5:5� 10�2

1 0.34 0.20
Strong 5.3 5.2



Fig. 2. (a) The ‘experimental’ velocity data enforced on the internal boundary condition, which is equal to the analytical solution plus Gaussian noise with
zero mean and rv ¼ 0:1. (b) Flow in the tube domain (the x = 0.1 plane is shown) using strong enforcement of the internal boundary condition (the x = 0
plane) for a tube with a diameter of 1.0.

Fig. 3. (a) The internal boundary plane with the ‘experimental’ data weakly enforced with the proper weighting of wv ¼ 0:01. (b) The x = 0.1 plane using
weak enforcement ðwv ¼ 0:01Þ of the internal boundary condition (the x = 0 plane) for a tube with a diameter of 1.0.

J.J. Heys et al. / Journal of Computational Physics 229 (2010) 107–118 113
boundary data has a small amount of error ðrv ¼ 0:04Þ, but the data along the x ¼ 0 plane of the domain has a larger error
ðrv ¼ 0:4Þ. The proper method for handling this situation is to weight the x ¼ 0 plane with wv ¼ 0:01 and the inlet with
win ¼ 1:0, except for the elements with edges on the x ¼ 0 plane that should be weighted with wv ¼ 0:01. In this case, the
entire inlet plane had a weight of win ¼ 1:0, resulting in a larger-than-optimal weight for the line x ¼ 0 along the inlet. How-
ever, this change reveals the ability of WLSFEM to quickly dampen those errors and still achieve a high quality solution for
most of the domain away from the inlet as shown in Fig. 5. This result indicates that, when a larger-than-optimal weight is
used for one or two isolated boundary conditions, the overall solution quality can still remain acceptable. The value of the
functional is Gw ¼ 0:89 ðGX ¼ 0:47Þ for the WLSFEM solution, which is much smaller than Gw ¼ 22:3 for the strongly enforced
experimental data solution.



Fig. 4. (a) The ‘experimental’ data containing more Gaussian noise ðrv ¼ 0:4Þ, and (b) The x = 0.1 plane using strong enforcement of the internal boundary
condition (the x = 0 plane) for a tube with a diameter of 1.0.

Fig. 5. The internal boundary plane with the ‘experimental’ data weakly enforced with the proper weighting of wv ¼ 0:01 applied everywhere except along
the edge of the inlet where a weight of wv ¼ 1:0 is applied.
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3.2. Straight tube with real data

The second test problem uses laser PIV [16] data from a flow of water through a straight cylindrical tube. The Reynolds
number for the experimental flow is 1� 104; so, instead of solving the time dependent Navier–Stokes equation, the Rey-
nolds-averaged Navier–Stokes equations are solved because initial condition data is not available for the entire flow domain
[21]. The time-averaged laser PIV data is used as an internal boundary condition on a plane crossing the axis of the cylinder.
An additional complication is that the PIV data is not available out to the edges of the cylinder but is limited to the inner 4/7
of the cylinder diameter as shown in Fig. 6. Before the PIV data can be used in the WLSFEM simulation, two additional cal-
culations must be performed. First, the PIV data is non-dimensionalized so that it can be used in conjunction with the dimen-
sionless Reynolds-averaged Navier–Stokes equations. Second, the PIV data must be mapped onto the nodes of the finite
element mesh used in the WLSFEM simulation. The mesh is generated so that a plane of nodes lie on the same plane as
the laser PIV data, and the nodal density of the mesh is similar to the density of the experimental data. As a result, a simple
Fig. 6. Time-averaged laser PIV data from a flow through a cylinder at a Re ¼ 1� 104. The data covers the inner 4/7 of the cylinder diameter.
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weighted average based on distance for the 4 or 9 nearest nodes is all that is required to map the data onto the nodes of the
finite element mesh. Changing from 4 to 9 nodes had only a negligible impact on the final nodal velocity, so 4 nodes were
normally used.

The result of strongly enforcing the PIV data on the finite element approximation space is shown in Fig. 7. The contour
lines in the figure are for the velocity component parallel to the axis of the tube. The laser PIV data is relatively accurate
(the standard error is only 5%) and, as a result, strongly enforcing the boundary condition on the finite element space does
not significantly contaminate the numerical approximation in the rest of the domain. The largest errors in the PIV data occur
along the upper left of the data plane where the velocity decreases unexpectedly, and these errors make mass conservation
difficult for the numerical solution to satisfy. Overall, however, the numerical approximation appears to be of acceptable
quality. The value of the least-squares functional is 0.75 when the PIV data is strongly enforced ðGX ¼ 0:69Þ, and it will be
important to compare this value to the functional value when the boundary condition is weakly enforced with the proper
weighting.

The error in the laser PIV data is small relative to some other PIV methods (the standard error is approximately 5% for this
simple geometry), and is only slightly larger in magnitude than the error associated with the other boundary conditions,
which are estimated to contain 1% error. We know, of course, that the velocity of the fluid is zero at the physical wall of
the tube, but since the exact location of the wall is not known (and varies slightly throughout the length of the tube), the
velocity of the fluid at the wall in the model has an error. As a result of the error in the various boundary conditions, all
boundary conditions were given a weight of 1.0 ðwin ¼ wout ¼ ww ¼ 1:0Þ except the portion of the internal boundary with
the PIV data, which was given a weight of 0:012=0:052 ¼ 0:04. When this weight is applied along the portion of the boundary
with the experimental data, the result is a smoother solution along both the x ¼ 0 plane (Fig. 8(a)) and the x ¼ 0:1 plane
(Fig. 8(b)). Even with the proper boundary weighting, the WLSFEM solution still displays some slight slowing of the fluid
due to the experimental data. And, while visual differences between the strongly enforced and weakly enforced experimen-
tal data are difficult to detect due to the relatively small errors in the laser PIV data, the change in the functional provides a
more quantitative comparison. As stated previously, Gw ¼ 0:75 and GX ¼ 0:69 when the experimental data was strongly en-
forced, but Gw ¼ 0:14 and GX ¼ 0:08 when the experimental data was weakly enforced with the proper boundary functional
weighting. This indicates that the approximate solution for the weakly enforced case is much more conservative for both
mass and momentum as measured in the functional norm.

3.3. Transient flow into a box

The final test problem also uses optical PIV data, but in this case the flow is a transient pulse of water into a cubic box that
is 6 in. on each side. The flow into the box lasts for 200 ms, and the peak Reynolds number is 1100. PIV velocity data was
acquired every 17.6 ms using a 3 ms time step between each image pair. The PIV data was collected on a 2.1 in. by 2.2 in.
Fig. 7. Axial velocity contours for the tube domain using strong enforcement of the laser PIV data as an internal boundary condition on velocity. The
simulation results are shown for the (a) x = 0.0 plane and (b) x = 0.1 plane.



Fig. 8. Axial velocity contours in the tube domain using weak enforcement (wv ¼ 0:04) of the laser PIV data as an internal boundary condition on velocity.
The simulation results are shown for the (a) x = 0.0 plane and (b) x = 0.1 plane.
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section of the PIV plane that was tilted as shown in Fig. 9. It is important to note that the PIV technique used is stereo, so that,
potentially, all three velocity components on the measurement plane can be resolved. In spite of the availability of the full
three dimensional data along the PIV plane, only the velocity components tangential to the PIV plane were used in the WLS-
FEM simulation because only two-dimensional data is available with many PIV techniques. The experimental PIV data was
smoothed by taking a moving average over two adjacent time steps. This was necessary to reduce the error to the point that
the data was usable in the simulations.

In order to simulate a transient flow, the WLSFEM algorithm was modified by adding a backward (implicit) Euler time
step. Potentially, any time step size could be used in the simulation, and the experimental data would only be used at time
Fig. 9. The experimental configuration for the third test problem is a cubic chamber, 6 in. on each side, and the PIV plane is tilted as shown in the figure
above.



Fig. 10. (a) The experimental PIV data for the transient flow through a box problem. (b) The simulation results along the same plane as the PIV data using
strong enforcement of the data. (c) WLSFEM simulation results along the PIV plane using properly weighted weak enforcement of the PIV data.
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steps when it was available, but the results shown here employed the same time step size in the simulation as was used in
the experimental measurements (17.6 ms). The implicit time stepping scheme avoids any time step size limitations due to
numerical stability. A special mesh with a plane of nodes coinciding with the PIV plane was generated for simulating flow
through this geometry. The mesh contained 105,984 hexahedral elements (approximately 48 elements on each edge) and
both a trilinear and triquadratic finite element basis functions were used.

The PIV data at the tenth time step (t = 176 ms) is shown in Fig. 10(a). The data does not extend to the side wall of the
experimental box, and the data represents only the velocity tangential to the PIV plane. If the experimental data is enforced
strongly on the approximate solution to the Navier–Stokes equations, the error in that data effects the entire solution.
Fig. 10(b) shows the simulation results along a 3 in. by 3 in. section of the PIV plane with the PIV data strongly enforced.
However, if the PIV data is weighted (the standard error is again 5% and wv ¼ 0:1 and win ¼ wout ¼ ww ¼ 1:0) and enforced
weakly on the approximate solution to the Navier–Stokes equation, we see that both the noisy PIV data and the surrounding
approximate solution are significantly smoothed as shown in Fig. 10(c). When the experimental data was strongly enforced,
Gw ¼ 62 and GX ¼ 39, but Gw ¼ 8:9 and GX ¼ 7:3 when the experimental data was weakly enforced, indicating that the WLS-
FEM solution better satisfies the Navier–Stokes equations.

4. Conclusion

The assimilation of supplemental experimental data into a computational solution of the Navier–Stokes equations is of
growing importance due to the widespread expansion of experimental methods like PIV. The goal, ultimately, is to use
the computational solution to the Navier–Stokes equations to fill in the gaps in the experimental data. Complications arise,
however, when the experimental data has a different level of accuracy (or noise) from the other boundary data used in the
simulation. WLSFEM is one approach that attempts to balance the boundary information based on the accuracy of the data.
Further benefits of this approach include the fact that the approximate H1=2 norm typically used in computations deempha-
sizes the oscillatory error in the boundary conditions, and boundary data may be enforced either weakly through the func-
tional or strongly through the finite element approximation space. The effectiveness of the WLSFEM approach was first
demonstrated on flow through a tube where the experimental data was generated by adding Gaussian noise to the analytical
solution. Even for the case of large Gaussian noise, the WLSFEM gave an accurate result, and the error in the experimental
data was quickly damped out away from the plane where it was known. WLSFEM was also tested on actual laser PIV data for
two different geometries, and, again, the solutions with the weighted weak boundary condition was superior to the solutions
that strongly incorporated the experimental data. Overall, the WLSFEM provides the flexibility needed to combine the
numerical solution of the Navier–Stokes equations with supplemental experimental data.
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